Custom-train large language models for your domain.
Fine-tuning takes a general-purpose, pre-trained large language model (LLM) and adapts its weight parameters to excel on a narrowly defined domain or task. By exposing the model to domain-specific data for additional training epochs, fine-tuning:
from transformers import AutoModelForCausalLM, TrainingArguments, Trainer model = AutoModelForCausalLM.from_pretrained('llama-7b') # Insert LoRA adapters... # Prepare data... trainer = Trainer(model=model, args=TrainingArguments(...), train_dataset=...) trainer.train()