Achieve full-stack observability and AI-powered monitoring.
Comprehensive observability for microservices and monoliths, combining logs, metrics, traces, and AI-driven anomaly detection to meet strict SLAs.
from transformers import AutoModelForCausalLM, TrainingArguments, Trainer model = AutoModelForCausalLM.from_pretrained('llama-7b') # Insert LoRA adapters... # Prepare data... trainer = Trainer(model=model, args=TrainingArguments(...), train_dataset=...) trainer.train()