Scale LLM inference with distributed, optimized serving.
Scaling LLM inference requires combining distributed parallelism, optimized kernels, and dynamic resource allocation to meet stringent latency and throughput targets.
from transformers import AutoModelForCausalLM, TrainingArguments, Trainer model = AutoModelForCausalLM.from_pretrained('llama-7b') # Insert LoRA adapters... # Prepare data... trainer = Trainer(model=model, args=TrainingArguments(...), train_dataset=...) trainer.train()