Generate privacy-safe, high-fidelity synthetic data.
Synthetic data replicates real-world distributions—facilitating privacy compliance, addressing class imbalance, and enabling rapid model iteration without exposing sensitive information.
from transformers import AutoModelForCausalLM, TrainingArguments, Trainer model = AutoModelForCausalLM.from_pretrained('llama-7b') # Insert LoRA adapters... # Prepare data... trainer = Trainer(model=model, args=TrainingArguments(...), train_dataset=...) trainer.train()